Complete Blow-Up after T,,, for the Solution of a Semilinear Heat Equation
نویسنده
چکیده
منابع مشابه
On Blow-up at Space Infinity for Semilinear Heat Equations
We are interested in solutions of semilinear heat equations which blow up at space infinity. In [7], we considered a nonnegative blowing up solution of ut = ∆u+ u, x ∈ R, t > 0 with initial data u0 satisfying 0 ≤ u0(x) ≤ M, u0 ≡ M and lim |x|→∞0 = M, where p > 1 and M > 0 is a constant. We proved in [7] that the solution u blows up exactly at the blow-up time for the spatially constant solution...
متن کاملBLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM
In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...
متن کاملSome Blow-Up Problems For A Semilinear Parabolic Equation With A Potential
The blow-up rate estimate for the solution to a semilinear parabolic equation ut = ∆u+V (x)|u|p−1u in Ω×(0, T ) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x, 0) = Mφ(x) as M goes to infinity, which have been found in [5], are improved under some reason...
متن کاملBlow up of Solutions with Positive Initial Energy for the Nonlocal Semilinear Heat Equation
In this paper, we investigate a nonlocal semilinear heat equation with homogeneous Dirichlet boundary condition in a bounded domain, and prove that there exist solutions with positive initial energy that blow up in finite time.
متن کاملNumerical Blow-Up Time for a Semilinear Parabolic Equation with Nonlinear Boundary Conditions
We obtain some conditions under which the positive solution for semidiscretizations of the semilinear equation ut uxx − a x, t f u , 0 < x < 1, t ∈ 0, T , with boundary conditions ux 0, t 0, ux 1, t b t g u 1, t , blows up in a finite time and estimate its semidiscrete blow-up time. We also establish the convergence of the semidiscrete blow-up time and obtain some results about numerical blow-u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1985